PROGRAMME SPECIFIC OUTCOMES (PSOs)		
PSO 1	Critically evaluate and apply the theories and techniques of Chemistry	
PSO 2	Demonstrate subject-specific 'thinking' skills that are readily transferable to problem solving and decision making in a wider context	
PSO 3	Enhance their lifelong learning, employing a range of practical and professional skills in Chemistry	
PSO 4	Inculcate a scientific temper to find, evaluate, synthesize and use scientific information from a variety of sources	
PSO 5	Articulate an awareness of the social and community contexts within their disciplinary field	
PSO 6	Applies innovative scientific solutions to real-world environmental problems	

PROGRAMME OUTCOMES (POs)		
PO 1	Demonstrate a comprehensive understanding of the fundamental concepts in	
	chemistry, including organic, inorganic, physical, and analytical chemistry	
PO 2	Perform laboratory techniques proficiently and safely, including the use of	
	modern instrumentation and experimental methodologies.	
PO 3	Apply critical thinking and analytical skills to solve complex chemical	
	problems	
PO 4	Analyse and interpret chemical data using quantitative and qualitative	
	methods	
PO 5	Communicate chemical knowledge effectively through written reports, oral	
	presentations, and scientific publications	
PO 6	Integrate knowledge from different scientific disciplines that interconnected	
	nature of chemistry with other fields such as biology, physics etc.	
PO 8	Evaluate the impact of chemical processes on the environment and society,	
	promoting sustainable and responsible practices in chemistry	
PO 9	Recognize the advancements in chemical sciences and related technologies	

COURSE OUTCOMES (COs)		
CO 1	To understand the basic principles and instrumentation of chromatographic techniques for the separation of mixture of chemicals	
CO 2	To understand the instrumentation and applications of important spectroscopic methods for chemical analysis.	
CO 3	To understand the theory, bonding, structure and applications of coordination compounds	
CO 4	To understand the theory, bonding, structure and synthetic applications of organometallic compounds	
CO 5	To understand the importance of structure and bonding in solids	
CO 6	To apply the knowledge of electrode kinetics in electrochemical processes and electro analytical techniques	
CO 7	To apply the theory of multilayer adsorption of molecules on solid surfaces and its industrial applications	

COURSE OUTCOMES (COs)		
CO 1	Remember the nomenclature, structure, methods of preparation, reactivity	
	and common reactions of some organic compounds	
CO 2	Understand various organic reaction mechanisms	
CO 3	Understand the classification, isolation, purification and physiological activities of alkaloids and terpenes.	
CO 4	Understand the classification, types and mechanisms of polymerisation,	
CO 5	Elucidate the structure of simple organic compounds using spectral techniques.	
CO 6	To apply the concepts of stereochemistry, conformations and asymmetric synthesis	

COURSE OUTCOMES (COs)		
CO1	Understand the role of chemistry in science and scientific research	
	with emphasis on analytical data evolution	
CO2	Understand the theory of chemical bonding, molecular structure	
CO3	Remember the extraordinary properties of nanomaterial and its	
	applications	
CO4	Apply the concepts of lab safety measurements and volumetric	
	analysis	
CO5	Apply the analytical skills in inorganic quantitative and qualitative	
	analysis	
CO 6	Understand the concept of atomic orbitals in chemical bonding (the	
	mixing of wave functions of the two combining atoms).	